
Engineering Challenges in Immunizing Systems Against Malicious Code
Craig Chamberlain, Daniel Geer Sc. D., Verdasys, Inc.

(craig / geer) @verdasys.com

The Problem

In the absence of a strong generalized defense, biologic hosts must
experience an infection to develop antibodies to it. Inherently
reactive, this offers little or no resistance to a previously unknown
pathogen. For that, the organism cannot rely on time-lapsed
development of pathogen-specific antibodies, but must instead be
able to immediately disambiguate "self" and "not-self," which
Forrest, et. al, (1996) were perhaps the first to attempt adapting
to the digital world. Our challenge, as engineers, is to make such
determinations on the fly in a way that is both effective, prompt,
and non-interfering with needed work output of people and/or machines.

Background (Optional)

Self-replicating mobile code appeared in the 1970s becoming widespread
in the 1980s. Frederick Cohen introduced the term computer virus
in 1984, defining it as "a program that can 'infect' other programs
by modifying them to include a possibly evolved copy of itself."
Viruses spread by inserting code into other programs such that the
virus code executes along with the host program. Peter Szor (2005)
defines a worm as a virus which replicates across networks and
generally does not need to [and may never] infect a host file. A
Trojan Horse is a program that appears legitimate while secretly
doing something else. Gasser (1988) notes the Trojan horse problem
was identified remarkably late in the development of computers and
he and Thimbeleby, et. al, (1998) separately discuss how Trojan
Horse detection and prevention remains fundamentally unsolved.

Strictly speaking, perfect detection of malicious programs is
unsolvable -- it is undecideable. Cohen (1987) proved that no
single algorithm can detect all virus programs which might exist,
and separately (1994) showed that access control is ineffective
against malicious code. Firewalls and network layer defenses are
similar, but cannot be perfect and for the same reasons. Szor
(2005) and Chess & White (2000) both point out that there is a
threshold of code mutation beyond which viruses can exist but which
no algorithm can detect. While much good has come from a variety
of pattern matching and heuristic code scanners, nevertheless they
can only disinfect what they are trained to identify. File integrity
checking can reliably detect changes to file systems but at the
cost of potentially high numbers of false positives, e.g., due to

craig.chamberlain
Note
My email address has changed. Direct email to craig@craigchamberlain.com

patching and self-modifying programs such as those using run-time
packers. Grayaznov (1999) notes that integrity checking tools are
themselves targeted by slow infector viruses, which wait for files
to be modified and then piggyback their infection onto the legitimate
modification thus to escape notice.

As described by Szor (2005) , first- and second-generation virus
detectors used a variety of code and pattern matching techniques
and, later, algorithmic detection in a custom language. Next was
CPU emulation techniques to detect polymorphic viruses, which
partially mutate their own code in order to frustrate pattern
matching scanners, and Szor notes the significant challenge posed
by polymorphic viruses that use entry point obscuring techniques
(effectively randomizing their location within the infected host
file in order to make detection more difficult). Szor also notes
that some metamorphic viruses, which produce true mutations that
do not resemble the parent, would require a pattern matching against
an infeasible number of patterns. Christodrescu, et. al, (2003)
found that even simple code obfuscation techniques, such as inserting
NOP instructions defeated commercial virus scanners.

There are alternatives to pattern matching. Szor describes geometric
detection (examining changes to file structures), heuristic analysis
and behavior blocking tend (which generate false positive and false
negatives). Neural networks can produce acceptable rates of false
positives, but require considerable training, are subject to
overtraining, and tend toward unacceptable false positive ratios
when malicious code closely resembles non-malicious code.

Intrusion prevention systems (IPS) have scalability problems including
administration and configuration costs. Like intrusion detection,
intrusion prevention technologies face significant technical
challenges in achieving acceptable rates of false positives and
false negatives, especially when an IPS intervenes in the application
space to block behavior that may be malicious. The complexity of
modern operating system and application behavior make it especially
difficult to protect against a newly emerged threat for which the
IPS agent has no training.

Meeting the Challenge

Specifically, confront the problem of malicious code under these
practical requirements:

 1. Prevent de novo infection by malicious programs including
 viruses, worms and Trojan horse programs.

 2. ...without first obtaining new code, virus definitions,
 signature files, or data.

 3. ...consistent with intermittent connectivity including no
 facility to download data files.

 4. Maximally generic and thus independent of specific pattern
 matching or algorithmic methods of code examination and
 classification.

 5. Be configurable for mandatory enforcement, i.e., disallowance
 of override once installed.

 6. Be nevertheless manageable at enterprise scale and with a
 constant flux of changes and adds to people and facilities.

 7. Fail closed.

We describe the regulation of file and network subsystem calls using
a host agent that acts as a kernel level security tool in the spirit
of Anderson's (1972) Reference Monitor, specifically an inescapable
and invisible event trap for all kernel-level operations involving
data, broadly defined. Events, once detected may be logged, may
trigger a broad range of actions, or may be discarded as chaff.
This method has the substantial advantage of scale-independence
relative to the number of attack methods with which it may come in
contact, and as a consequent its rule set is small and needs no
reactive updates to new threats. The solution is real, has been
found to perform well in laboratory and field trials. As with any
practical COTS product, it does not do everything, e.g., our method
does not prevent purely in-memory threats which generate no I/O
activity. We believe that as with all engineering, the right problem
statement and the right abstraction tend to produce the best results.
We will share the results of our field trials.

